
TSQL2

The From Clause in TSQL2

September 23, 1994

A TSQL2 Commentary

The TSQL2 Language Design Committee

Title The From Clause in TSQL2

Primary Author(s) Richard Snodgrass and Christian S. Jensen

Publication History September 1994. TSQL2 Commentary.

TSQL2 Language Design Committee

Richard T. Snodgrass, Chair University of Arizona

rts@cs.arizona.edu Tucson, AZ

Ilsoo Ahn AT&T Bell Laboratories

ahn@cbnmva.att.com Columbus, OH

Gad Ariav Tel Aviv University

ariavg@ccmail.gsm.uci.edu Tel Aviv, Israel

Don Batory University of Texas

dsb@cs.utexas.edu Austin, TX

James Cli�ord New York University

jcliffor@is-4.stern.nyu.edu New York, NY

Curtis E. Dyreson University of Arizona

curtis@cs.arizona.edu Tucson, AZ

Ramez Elmasri University of Texas

elmasri@cse.uta.edu Arlington, TX

Fabio Grandi Universit�a di Bologna

fabio@deis64.cineca.it Bologna, Italy

Christian S. Jensen Aalborg University

csj@iesd.auc.dk Aalborg, Denmark

Wolfgang K�afer Daimler Benz

kaefer%fuzi.uucp@germany.eu.net Ulm, Germany

Nick Kline University of Arizona

kline@cs.arizona.edu Tucson, AZ

Krishna Kulkarni Tandem Computers

kulkarni_krishna@tandem.com Cupertino, CA

T. Y. Cli� Leung Data Base Technology Institute, IBM

cleung@vnet.ibm.com San Jose, CA

Nikos Lorentzos Agricultural University of Athens

eliop@isosun.ariadne-t.gr Athens, Greece

John F. Roddick University of South Australia

roddick@unisa.edu.au The Levels, South Australia

Arie Segev University of California

segev@csr.lbl.gov Berkeley, CA

Michael D. Soo University of Arizona

soo@cs.arizona.edu Tucson, AZ

Suryanarayana M. Sripada European Computer-Industry Research Centre

sripada@ecrc.de Munich, Germany

Copyright
c

 1994 Richard Snodgrass and Christian S. Jensen. All rights reserved.

Abstract

This document proposes syntax and informal semantics for an extended From clause in the Select

statement.

1 Introduction

Information retrieval is an integral component of any database management system. Temporal database

management systems should o�er user-friendly and powerful means of retrieval of data according to

temporal criteria. The From clause, which identi�es the underlying relations from which the information

is to be retrieved, is an important component of the Select statement.

2 Informal De�nition

In the language extension to be discussed shortly, we adopted the following goals.

1. Extensions should be upward compatible with current SQL-92.

2. Extensions should be as minimal as possible.

3. As few reserved words as possible should be introduced.

4. Punctuation should be consistent with the rest of the language.

5. Extensions should be consistent and compatible with user-de�ned time syntax.

6. Cleanliness of the BCDM should be retained.

7. Defaults should be carefully chosen to re
ect common usage and to enable a suitable reduction

proof (see (1)).

Let us examine a few examples, to provide a very informal description. As will be seen, this is an

extension of the previous syntax. The Employee relation, with Name, Dept, and Salary attributes, will

be referenced in the examples. The clause

FROM Employee

is equivalent to FROM Employee AS Employee, which is equivalent to FROM Employee(*) AS Employee,

which declares a tuple variable named Employee ranging over the relation Employee grouped on all of

its attributes, specifying that in each tuple, each attribute will have exactly one value. This example

illustrates how the new syntax is upward-compatible with the existing syntax, and also how snapshot

reducibility could be proven. The clause

FROM Employee(Name) AS Emp

1

groups on the Name attribute. There may be many values for the Salary and Dept attributes within a

single \grouped tuple", but there will only be one value for the Name attribute. In fact, the Salary and

Dept attributes are inaccessible through Emp. We'll see shortly how to access such attributes.

When the tuple variable's lifespan is referenced, say in a where clause, the lifespan is the union of

the chronons of the BCDM tuples having the same value for Name that were collected together to form

the grouped tuple. Only the attributes mentioned in the <coalescing attributes> can be referenced in

the rest of the query.

Who has been on the payroll for more than �ve years?

SELECT Name

FROM Employee(Name) AS Emp

WHERE CAST(Emp AS INTERVAL YEAR) > INTERVAL '5' YEAR

Since the from clause is grouped on Name, the lifespan of the Employee tuple variable is the lifespan of

that employee, and is a temporal element.

Who has worked in Toys longer than Di has made $20,000?

SELECT E.Name

FROM Employee(Name, Dept) AS E, Employee(Name, Salary) AS D

WHERE E.Dept = "Toys" AND D.Name = "Di" AND D.Salary = 20000

AND CAST(E AS INTERVAL DAY) > CAST(D AS INTERVAL DAY)

Note that the lifespan of D (a temporal element) is all the times that there is a tuple with D.Name =

"Di" and D.Salary = $20,000. This cannot be done easily in a period tuple-timestamped language that

employs a weaker From clause.

Tuple variables can be associated with other tuple variables. The clause

FROM Employee(Name) AS E, E(Name,Salary) AS F

speci�es that F is a tuple variable with two attributes, e�ectively synchronized with E on the Name

attribute. As syntactic sugar, it is not necessary to mention the shared attributes, and hence this From

clause is equivalent to

FROM Employee(Name) AS E, E(Salary) AS F

This clause de�nes a tuple variable E, grouped on Name, and a \coupled" tuple variable F, grouped on

Name and Salary (since F is coupled to E, it inherits E's grouped attributes). E will range over Employee,

grouped on Name. Then, F will range over all the tuples of E that are grouped on both Name and Salary.

The Name attribute will be the same for both E and F at any time, but the salary can vary.

2

E and F are linked in another way. If, for a particular E, there is no F that satis�es the where clause,

then E is considered not to have satis�ed the where clause. This will fall out of the semantics, which

treats a <correlation name> that appears as a <table source> simply as additional equality predicates

on the shared attributes. Hence, the above from clause is equivalent to

FROM Employee(Name) AS E, Employee(Name, Salary) AS F

WHERE E.Name = F.Name AND E OVERLAPS F

We now discuss the second parenthesized component, the <partitioning unit>. The clause

FROM Employee

is equivalent to FROM Employee AS Employee, which is equivalent to FROM Employee(*) AS Employee,

which is actually equivalent to FROM Employee(*)(ELEMENT) AS Employee. Note that ELEMENT parti-

tioning is the default. The clause

FROM Employee(PERIOD) AS Emp

is equivalent to FROM Employee(*)(PERIOD) Employee AS Emp. This from clause �rst groups on all

attributes of Employee, then partitions the resulting temporal elements into maximal periods, yielding

tuple timestamping with periods. This generates many value-equivalent tuples, each associated with

exactly one (maximal) period, for the purposes of the rest of the query. Note that this operation is

free if an period-tuple-timestamped representational data model is used (but is nonetheless important

semantically).

Consider query Q 2.1.3 from the test suite, \Who worked continuously in the Toy department for

as long as Di?"

SELECT E.Name

FROM Employee(Name,Dept)(PERIOD) AS E, Employee(Name,Dept)(PERIOD) AS D

WHERE E.Dept = "Toys" AND D.Dept = "Toys" AND D.Name = "Di"

AND CAST(E AS INTERVAL DAY) >= CAST(D AS INTERVAL DAY)

Many queries are interested in maximal periods, and so being able to partition a temporal element

into such periods is highly useful.

3 Expressive Power

It turns out that coalescing attributes are syntactic sugar in the in TSQL2's data model. Speci�cally,

FROM Employee(Name) AS E

3

is equivalent to

FROM (SELECT Name FROM Employee) AS E

This is true whether Employee is a snapshot relation or a valid time relation. In the latter case, the

projection does an automatic coalescing of temporal element timestamps.

4 Acknowledgements

Support was provided in part by the National Science Foundation under grant IRI-9302244, and in part

by the AT&T Foundation. In addition, support was provided in part by the Danish Natural Science

Research Council under grants 11{1089{1 SE and 11{0061{1 SE.

A Modi�ed Language Syntax

The organization of this section follows that of the SQL-92 document. The syntax is listed under

corresponding section numbers in the SQL-92 document. All new or modi�ed syntax rules are marked

with a bullet (\�") on the left side of the production.

Where appropriate, we provide disambiguating rules to describe additional syntactic and semantic

restrictions. We assume that the reader is familiar with the SQL-92 standard, and that a copy of the

proposal is available for reference.

A.1 Section 5.2 <token>

One reserved word was added.

<reserved word> ::=

� ELEMENT

A.2 Section 6.3 <table reference>

The production for the non-terminal <table reference> is replaced with the following. The �rst com-

ponent can be more complex than a single <table name>, and multiple space-separated <correlation

name>s are permitted.

<table reference> ::=

� <table source> [[AS] <correlation>

�

<correlation>

	

...]

�

�

�

<derived table> [AS] <correlation>

�

<correlation>

	

...

�

�

<joined table>

4

The following productions are added. The �rst allows table references to be de�ned in terms of

other table references. The rest serve to de�ne <correlation modi�er>.

<table source> ::=

� <table name> <correlation modi�er>

�

�

�

<correlation name> <correlation modi�er>

<correlation> ::=

� <correlation name> [<left paren> <derived column list> <right paren>]

<correlation modi�er> ::=

� [<left paren> <coalescing columns> <right paren>]

[<left paren> <partitioning unit> <right paren>]

<coalescing columns> ::=

� <column name> [

�

<comma> <column name>

	

...]

�

�

�

<asterisk>

<partitioning unit> ::=

� ELEMENT

�

�

�

PERIOD

Additional syntax rules:

1. <coalescing columns> of <asterisk> imply all the attributes of the <table name> or <correlation

name>.

2. If the <coalescing attributes> are not present, then <asterisk> is assumed.

3. If a <correlation modi�er> is applied to a <table source>, then a <correlation> is required.

4. If the <correlation modi�er> is applied to a <correlation name>, then the attributes are drawn

from the table upon which the <correlation name> is based, and augment those attributes asso-

ciated with the <correlation name>. The latter attributes can be mentioned in this <correlation

modi�er>, but is not required.

5. If <partitioning unit> is not speci�ed, then Element is assumed.

Additional general rules:

1. Let CM be the <correlation modi�er>. Let CN be a <column name> contained in CM , and C

be the column.

Case:

� If CM is associated with a <table name>, then let T be that table name. The table identi�ed

by T is the ultimate table of CN .

� If CN is associated with a <correlation name>, then let D be that <correlation name>. The

ultmate table of CN is the ultimate table of D.

5

2. C must be a column of its ultimate table.

3. Only those <column name>s indicated as <coalescing columns> are accessible via the <correlation

name>.

6

